

Inspect Data

Software Development Kit

For C#

Overview

The Inspect Data SDK for C# provides tools to enhance functionality for content scanning and associated

security solutions. This iteration of the toolkit allows for the ability to identify sensitive information; this

identification aids in setting rules to safeguard data. The toolkit is delivered as a C# library and several

related system libraries and data assets. This guide describes the SDK's interface needed for integration.

This version necessitates a system capable of loading and running on 64-bit Linux-based shared

modules.

Definitions

The system is comprised of an engine context, configuration and sessions:

Engine context – control mechanism for running scans based on configuration.

Configuration – set of rules/classifiers used by engine to identify matches.

Sessions - context for a scan of a single data set.

The system creates an engine context tied to a particular configuration upon instantiation of an SDK

object. It is possible for multiple engine contexts, tied to different configurations, to be used at the

same time by instantiating additional SDK objects (say, for a multi-tenant solution), but in normal use

cases there will be only one engine context per process.

A configuration consists of a list of classifiers. A classifier is a definition of a type of sensitive information

(for example, SSN) that will be identified by the engine. A classifier is comprised of multiple entities of

different types (for example, regexes, pre-defined strings, dictionaries, so on and so forth.) When a

classifier is identified, it is also associated with a particular confidence score ranging from 0 to 100, with

100 being perfect confidence.

When scanning, the engine context is used to create a session and the session should be used for

subsequent scans. Sessions can be reused between different scans, but in this case the session should

be reset when switching to the new scan.

The SDK calls are thread safe, but multiple threads cannot concurrently process the same document or

piece of text -- for a given document, the text must be processed serially. It is fine to process documents

on multiple threads as long as a different session is used for each thread.

 When the SDK has detected a piece of sensitive information, it will invoke a callback to the caller's code.

The calling code can deal with the information appropriately. The callback routine may also return a

non-zero value to halt the scanning process.

SDK Details

The Inspect Data SDK for C# is intended for software development teams integrating direct, raw data

scanning into an existing or new application. The SDK consists of a C# library and several system

libraries. The SDK is exposed to the client application via a native class interface hierarchy, as follows:

Interface Usage

Create SDK InspectData.SDK sdk = new InspectData.SDK();

Create Session InspectData.SDK.Session session = new InspectData.SDK.Session(sdk);

Create Callback InspectData.SDK.CallbackDelegate callback = MyCallback;

Scan Data session.Scan(dataToScan, dataToScan.Length, flags, callback);

Using the SDK is intended to be minimally impactful on the implementor. The SDK consists of a single

master object, the SDK itself, and a worker object, a session. The SDK object is always initialized once,

and for each “scan”, a session object is created (or a single session object may be used.) Note that in

cases of muti-threaded applications, each thread must use its own session. The implementor supplies a

callback routine that will “receive” each discovered element.

A minimal usage example can be built as shown below.

using System;

using InspectData;

class InspectDataSDK_Demo {

 // ScanCallback - will be called once for each matching element

 static int ScanCallback (string snippet, int left, int right, string name, int

confidence)

 {

 // do something with the data

 System.Console.WriteLine (" Match: snippet=\"" + snippet + "\", as " + name + ",

confidence=" + confidence + ", from " + left + " - " + right);

 // return 0 to keep going (anything else to stop the scan)

 return 0;

 }

 static void Main(string[] args) {

 // create the SDK

 InspectData.SDK sdk = new InspectData.SDK();

 // create a session (we will reuse this session for each scan)

 InspectData.SDK.Session session = new InspectData.SDK.Session(sdk);

 // setup the callback routine

 InspectData.SDK.CallbackDelegate callback = ScanCallback;

 // process each file - simple text files for demonstration purposes

 foreach (string source in args) {

 // get the file's contents

 System.Console.WriteLine ("\n\nProcessing [" + source + "]:\n");

 string dataToScan = System.IO.File.ReadAllText(source);

 // run the scan

 session.Scan(dataToScan, (long)dataToScan.Length, 0, callback);

 }

 }

}

SDK API

The core SDK object is typically created once for the application, as follows;

InspectData.SDK sdk = new InspectData.SDK();

The object is fully instantiated and configured upon creation. There are two options for creating an SDK

instance;

1. new InspectData.SDK() - creates a default SDK with all built in classifiers enabled

2. new InspectData.SDK(configFileName) - creates an SDK based on a custom configuration

All sessions created from an SDK instance will use the same configuration.

A session is created to perform a scan. A single session may be used to perform many scans, or a

session may be created for each scan. The SDK will cleanup all sessions when the SDK object is garbage

collected, or in the case of a new session for each scan, it is recommended to manually destroy the

session when it is complete.

There are three methods exposed;

1. Scan(…) - performs the scan of the supplied data

2. Reset() - resets a session to a clean starting state (not typically used by the client application)

3. Destroy() - removes the session immediately instead of waiting until the SDK object is freed

Technical details for each method is given below.

<session>.Scan(

string data,

long size,

int flags,

InspectData.SDK.CallbackDelegate callback

)

Parameter Usage

data UTF-8 data to scan

size Number of UTF-8 characters (bytes)

flags Combination of zero or more scan flags

callback The delegate to handle the callbacks

Flag masks are accessible in InspectData.SDK. The flags that can be passed in:

Flag Purpose

CSV_FILE Data being scanned is a CSV file

CSV_FILE_WITH

_HEADER

Data being scanned is a CSV file with a header. If this is the first time scan is being
called with this session, then the first line of the buffer will be treated as a list of
field names for the data to follow.

The scan method performs a scan of the entire data buffer. Each matching item generates a report back

to the callback routine. The callback routine must conform to the following signature;

int Callback(

string snippet,

int left,

int right,

string name,

int confidence

)

Parameter Usage

snippet The match that was found (the actual text)

left Approximate starting position in the data buffer

right Approximate ending position in the data buffer

name The name of the classifier for the match

confidence A value in the range 1 (low) to 100 (high) indicating the confidence of the match

The callback routine must return an integer value, where 0 (zero) tells the scanner to continue working,

and any other value terminates the scan prematurely. If the client application terminates the scan, it

must reset the session before reuse.

<session>.Reset()

Failure to reset a session that was terminated may result in false matches or missed matches in the next

scan for the same session object.

<session>.Reset()

The reset method will return a session to its initial, clean state. This method should only be called when

a session is truly complete. This call is primarily used when you wish to re-use a session object to process

another file; it is rarely needed in other cases but may be useful in cases where the application needs to

abort a scanning session in the middle and restart it with new data.

<session>.Destroy()

The destroy method will remove a session from memory. The SDK object keeps track of all sessions it

creates (via new InspectData.SDK.Session(sdk)) and will clean up all objects and memory upon

garbage collection by the system. However, some applications may wish to force a session out in a

more timely or controlled manner. Applications that reuse a single session object will not need to call

the destroy method.

Including the SDK in a C# project

An implementation uses the SDK by simply adding the C# library to a project and adding the system

libraries to the local file system (usually /usr/lib). For example, a project may be constructed as follows;

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

 <RuntimeIdentifier>linux-x64</RuntimeIdentifier>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

</PropertyGroup>

<ItemGroup>

 <ProjectReference Include="<SDKPath>/InspectDataSDK.csproj" />

</ItemGroup>

</Project>

	Overview
	SDK Details
	SDK API
	Including the SDK in a C# project

